godot-psd-training/Communication/voice_communication.gd

260 lines
7.4 KiB
GDScript3
Raw Normal View History

extends Node
## 语音识别成功信号
2024-05-11 20:06:02 +08:00
signal speech_recognition_successed
## 录音效果器
2024-05-08 16:56:02 +08:00
var effect: AudioEffectRecord
## 录音捕获效果器(用于判断录音音量)
var capture: AudioEffectCapture
## 待语音识别的文本
var targetText: String
## 音量最小阈值
2024-05-16 17:31:54 +08:00
const VolumeMin = 0.05
## 长时间没有说话阈值
const LongTimeNoVoice = 1
var hasVoice = false
var novoiceTime = 0
## 是否存在未完成的HTTP请求
var hasUnfinishedRequest = false
## 待识别的录音队列
var recordingQueue: Array = []
@onready var http_req = $HTTPRequest
const URL = "http://192.168.33.233/rtss-server/api/voice/verify?text=%s"
var ConfigParams = preload("res://config_params.gd")
## 语音识别成功回复音效
var reply_correct = preload("res://Assets/training_speech/correct.mp3")
func _ready():
# We get the index of the "Record" bus.
var idx = AudioServer.get_bus_index("Record")
# And use it to retrieve its first effect, which has been defined
# as an "AudioEffectRecord" resource.
effect = AudioServer.get_bus_effect(idx, 0)
# 音频数据捕获,用于判断录音音量从而判断是否有声音输入
capture = AudioServer.get_bus_effect(idx, 1)
2024-05-08 16:56:02 +08:00
## 启动录音
func startRecord():
2024-05-11 20:06:02 +08:00
print("启动录音")
2024-05-08 16:56:02 +08:00
if not effect.is_recording_active():
effect.set_recording_active(true)
## 停止录音
func stopRecord():
if effect.is_recording_active():
effect.set_recording_active(false)
2024-05-08 16:56:02 +08:00
## 重启录音
func restartRecord():
effect.set_recording_active(false)
effect.set_recording_active(true)
## 播放回复
## PS: 是协程函数外部可以await
func play_reply(reply):
2024-05-11 20:06:02 +08:00
if reply == null:
return
stopRecord()
assert(reply is AudioStream, "reply不是音频资源")
## 确保不循环播放
if reply is AudioStreamMP3:
reply.loop = false
if reply is AudioStreamOggVorbis:
reply.loop = false
if reply is AudioStreamWAV:
reply.loop_mode = AudioStreamWAV.LOOP_DISABLED
$AudioStreamPlayer.stream = reply
$AudioStreamPlayer.play()
await $AudioStreamPlayer.finished
## 录音并语音识别检查
## PS: 是协程函数外部如果关心结果需await
func speech_record_check(text: String):
2024-05-15 11:18:41 +08:00
assert(text != null and not text.is_empty(), "待识别的结果text不能为空")
print("录音采样频率: ", AudioServer.get_mix_rate())
targetText = text
2024-05-11 20:06:02 +08:00
startRecord()
$Timer.start()
await speech_recognition_successed
print("识别成功,结束")
2024-05-15 11:18:41 +08:00
_reset_record_state()
2024-05-11 20:06:02 +08:00
## 重置录音识别相关状态
2024-05-15 11:18:41 +08:00
func _reset_record_state():
targetText = ""
hasVoice = false
novoiceTime = 0
stopRecord()
$Timer.stop()
2024-05-08 16:56:02 +08:00
## 定时处理录音并识别的逻辑
2024-05-08 16:56:02 +08:00
func _on_timer_timeout():
if effect.is_recording_active():
var buf = capture.get_buffer(capture.get_frames_available())
var soundDetected = false
for vec in buf:
2024-05-11 20:06:02 +08:00
if vec.x > VolumeMin or vec.y > VolumeMin:
#print("Left channel volume = ", vec.x, ", Right volume = ", vec.y)
soundDetected = true
# 检测到声音处理
if soundDetected:
hasVoice = true
novoiceTime = 0
# 未检测到声音处理
2024-05-11 20:06:02 +08:00
else:
novoiceTime += $Timer.wait_time
if hasVoice and novoiceTime >= LongTimeNoVoice:
2024-05-11 20:06:02 +08:00
var rcd = effect.get_recording()
if rcd == null:
return
print("音频时长: ", rcd.get_length())
restartRecord()
#await play_reply(rcd)
2024-05-15 11:18:41 +08:00
#startRecord()
_request_speech_recognition(rcd)
hasVoice = false
# 长时间无语音输入,重启录音
if novoiceTime >= LongTimeNoVoice:
print("长时间无声音,重启录音")
restartRecord()
novoiceTime = 0
2024-05-15 11:18:41 +08:00
## 请求语音识别
func _request_speech_recognition(recording: AudioStreamWAV):
if hasUnfinishedRequest:
recordingQueue.append(recording)
return
hasUnfinishedRequest = true
var url = URL % targetText
var headers = ["Content-Type: audio/wav"]
headers.append("X-Token: %s" % ConfigParams.Token)
2024-05-15 11:18:41 +08:00
var now = Time.get_datetime_string_from_system()
var body = _build_wav(recording)
var error = http_req.request_raw(url, headers, HTTPClient.METHOD_POST, body)
if error != OK:
push_error("在HTTP请求语音识别时发生了一个错误。", error)
## 语音识别接口调用结果
2024-05-15 11:18:41 +08:00
func _on_http_request_request_completed(result, response_code, headers, body):
hasUnfinishedRequest = false
var json = JSON.parse_string(body.get_string_from_utf8())
print("语音识别结果: ", json)
var data = json["data"]
# 验证成功,结束
2024-05-15 11:18:41 +08:00
if data != null and data["match"] == true:
await play_reply(reply_correct)
speech_recognition_successed.emit()
# 未成功,如果录音队列不空,取出最新的继续识别
2024-05-15 11:18:41 +08:00
if recordingQueue.size() > 0:
var next = recordingQueue.pop_back()
_request_speech_recognition(next)
## 构造wav文件二进制数据
2024-05-15 11:18:41 +08:00
func _build_wav(recording: AudioStreamWAV) -> PackedByteArray:
var data_bytes = recording.data.size()
#Subchunk2Size = Size of data in bytes
var sub_chunk_2_size = data_bytes
# Format code
# 1:PCM format (for 8 or 16 bit)
# 3:IEEE float format
var format_code = 3 if (recording.format == AudioStreamWAV.FORMAT_IMA_ADPCM) else 1
var n_channels = 2 if recording.stereo else 1
#print("录音结果采样率: ", recording.mix_rate)
var sample_rate = AudioServer.get_mix_rate()
var byte_pr_sample = 0
match recording.format:
AudioStreamWAV.FORMAT_8_BITS:
byte_pr_sample = 1
AudioStreamWAV.FORMAT_16_BITS:
byte_pr_sample = 2
AudioStreamWAV.FORMAT_IMA_ADPCM:
byte_pr_sample = 4
var wav: PackedByteArray = []
# Create WAV Header
store_string(wav, "RIFF") # ChunkID
store_32(wav, sub_chunk_2_size + 36) # ChunkSize = 36 + SubChunk2Size (size of entire file minus the 8 bits for this and previous header)
store_string(wav, "WAVE") # Format
store_string(wav, "fmt ") # Subchunk1ID
store_32(wav, 16) # Subchunk1Size = 16
store_16(wav, format_code) # AudioFormat
store_16(wav, n_channels) # Number of Channels
store_32(wav, sample_rate) # SampleRate
store_32(wav, sample_rate * n_channels * byte_pr_sample) # ByteRate
store_16(wav, n_channels * byte_pr_sample) # BlockAlign = NumChannels * BytePrSample
store_16(wav, byte_pr_sample * 8) # BitsPerSample
store_string(wav, "data") # Subchunk2ID
store_32(wav, sub_chunk_2_size) # Subchunk2Size
# Add data
var stream_data = recording.get_data()
#print("formatCode=", format_code, ", n_channels=", n_channels, ", sample_rate=", sample_rate,
#", byte_pr_sample=", byte_pr_sample, ", sub_chunk_2_size=", sub_chunk_2_size, ", data_size=", stream_data.size())
match recording.format:
AudioStreamWAV.FORMAT_8_BITS:
for i in data_bytes:
var data_point = stream_data[i] + 128
wav.append(data_point)
AudioStreamWAV.FORMAT_16_BITS:
for i in data_bytes/2:
var data_point = decode_uint16(stream_data[i*2], stream_data[i*2+1])
store_16(wav, data_point)
_:
push_error("构建wav错误不支持的音频格式")
return wav
func store_string(buffer: PackedByteArray, s: String):
buffer.append_array(s.to_utf8_buffer())
func store_16(buffer: PackedByteArray,p_dest: int, big_endian: bool = false):
var a
var b
a = p_dest & 0xFF
b = p_dest >> 8
var c
if big_endian:
c = a
a = b
b = c
buffer.append(a)
buffer.append(b)
func store_32(buffer: PackedByteArray, p_dest: int, big_endian: bool = false):
var a
var b
a = p_dest & 0xFFFF
b = p_dest >> 16
var c
if big_endian:
c = a
a = b
b = c
store_16(buffer, a, big_endian)
store_16(buffer, b, big_endian)
func decode_uint16(v1, v2) -> int:
var v = 0
v |= v1
v2 <<= 8
v |= v2
return v