rts-sim-testing-service/protobuf/main_test.go

280 lines
7.7 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package protobuf
import (
"fmt"
"google.golang.org/protobuf/proto"
"joylink.club/bj-rtsts-server/ats/verify/protos/graphicData"
proto2 "joylink.club/rtsssimulation/repository/model/proto"
"os"
"testing"
)
func TestBuildRepository(t *testing.T) {
bytes, err := os.ReadFile("./file.bin")
dir, _ := os.Getwd()
println(dir)
if err != nil {
panic(err)
}
storage := &graphicData.RtssGraphicStorage{}
err = proto.Unmarshal(bytes, storage)
if err != nil {
panic(err)
}
repo := &proto2.Repository{}
//todo 数据中id为379的区段B端无计轴临时在代码里修改后续删除
storage.AxleCountings = append(storage.AxleCountings, &graphicData.AxleCounting{
Common: &graphicData.CommonInfo{
Id: "10000",
},
KilometerSystem: &graphicData.KilometerSystem{
Kilometer: 13403549,
CoordinateSystem: "MAIN_LINE",
Direction: graphicData.Direction_RIGHT,
},
AxleCountingRef: []*graphicData.RelatedRef{{
DeviceType: graphicData.RelatedRef_Section,
Id: "379",
DevicePort: graphicData.RelatedRef_B,
}},
Index: 0,
Invent: false,
Type: 0,
})
axleCountingMap := make(map[string]*graphicData.AxleCounting)
for _, data := range storage.AxleCountings {
if data.KilometerSystem == nil {
println(fmt.Sprintf("计轴[%s]缺少公里标", data.Common.Id))
continue
}
axleCountingMap[data.Common.Id] = data
cpType := proto2.CheckPointType_AxleCounter
if data.Invent {
cpType = proto2.CheckPointType_Boundary
}
cp := &proto2.CheckPoint{
Id: data.Common.Id,
Km: convertKm(data.KilometerSystem),
Type: cpType,
DevicePorts: convertDevicePorts(data.AxleCountingRef),
}
repo.CheckPoints = append(repo.CheckPoints, cp)
}
for _, data := range storage.Section {
var turnoutIds []string
if data.SectionType == graphicData.Section_TurnoutPhysical {
turnoutIds = findTurnoutIds(axleCountingMap, data.AxleCountings)
}
physicalSection := &proto2.PhysicalSection{
Id: data.Common.Id,
ADevicePort: convertDevicePort(data.PaRef),
BDevicePort: convertDevicePort(data.PbRef),
TurnoutIds: turnoutIds,
}
repo.PhysicalSections = append(repo.PhysicalSections, physicalSection)
}
for _, data := range storage.Turnouts {
var km *proto2.Kilometer
for _, ks := range data.KilometerSystem {
if ks.Kilometer != 0 {
km = convertKm(ks)
break
}
}
for _, kc := range buildKmConverts(data.KilometerSystem) {
repo.KilometerConverts = append(repo.KilometerConverts, kc)
}
turnout := &proto2.Turnout{
Id: data.Common.Id,
Km: km,
ADevicePort: convertDevicePort(data.PaRef),
BDevicePort: convertDevicePort(data.PbRef),
CDevicePort: convertDevicePort(data.PcRef),
}
repo.Turnouts = append(repo.Turnouts, turnout)
}
for _, data := range storage.Signals {
var sectionId string
var turnoutPort *proto2.DevicePort
switch data.RefDev.DeviceType {
case graphicData.RelatedRef_Section:
sectionId = data.RefDev.Id
case graphicData.RelatedRef_Turnout:
turnoutPort = convertDevicePort(data.RefDev)
}
signal := &proto2.Signal{
Id: data.Common.Id,
Km: convertKm(data.KilometerSystem),
SectionId: sectionId,
TurnoutPort: turnoutPort,
}
repo.Signals = append(repo.Signals, signal)
}
for _, data := range storage.Transponders {
var sectionId string
var turnoutPort *proto2.DevicePort
switch data.TransponderRef.DeviceType {
case graphicData.RelatedRef_Section:
sectionId = data.TransponderRef.Id
case graphicData.RelatedRef_Turnout:
turnoutPort = convertDevicePort(data.TransponderRef)
}
responder := &proto2.Transponder{
Id: data.Common.Id,
Km: convertKm(data.KilometerSystem),
SectionId: sectionId,
TurnoutPort: turnoutPort,
}
repo.Transponders = append(repo.Transponders, responder)
}
slopeKsMap := make(map[string]*graphicData.SlopeKiloMarker)
for _, data := range storage.SlopeKiloMarker {
slopeKsMap[data.Common.Id] = data
for _, kc := range buildKmConverts(data.KilometerSystem) {
repo.KilometerConverts = append(repo.KilometerConverts, kc)
}
}
curveKsMap := make(map[string]*graphicData.CurvatureKiloMarker)
for _, data := range storage.CurvatureKiloMarker {
curveKsMap[data.Common.Id] = data
for _, kc := range buildKmConverts(data.KilometerSystem) {
repo.KilometerConverts = append(repo.KilometerConverts, kc)
}
}
for _, data := range storage.Slopes {
var kms []*proto2.Kilometer
for _, id := range data.RefDeviceId {
kms = append(kms, convertKm(slopeKsMap[id].KilometerSystem[0]))
}
slope := &proto2.Slope{
Id: data.Common.Id,
Kms: kms,
Degree: data.SlopeNumber,
}
repo.Slopes = append(repo.Slopes, slope)
}
for _, data := range storage.Curvatures {
var kms []*proto2.Kilometer
for _, id := range data.RefDeviceId {
kms = append(kms, convertKm(curveKsMap[id].KilometerSystem[0]))
}
slope := &proto2.SectionalCurvature{
Id: data.Common.Id,
Kms: kms,
Radius: data.CurvatureNumber,
}
repo.SectionalCurvatures = append(repo.SectionalCurvatures, slope)
}
repoBytes, err := proto.Marshal(repo)
if err != nil {
panic(err)
}
err = os.WriteFile("./repo.bin", repoBytes, os.ModePerm)
println(err)
}
func convertKm(ks *graphicData.KilometerSystem) *proto2.Kilometer {
var dir proto2.Direction
switch ks.Direction {
case graphicData.Direction_LEFT:
dir = proto2.Direction_LEFT
case graphicData.Direction_RIGHT:
dir = proto2.Direction_RIGHT
}
return &proto2.Kilometer{
Value: ks.Kilometer,
CoordinateSystem: ks.CoordinateSystem,
Direction: dir,
}
}
func convertDevicePort(ref *graphicData.RelatedRef) *proto2.DevicePort {
if ref == nil {
return nil
}
var deviceType proto2.DeviceType
var port proto2.Port
switch ref.DevicePort {
case graphicData.RelatedRef_A:
port = proto2.Port_A
case graphicData.RelatedRef_B:
port = proto2.Port_B
case graphicData.RelatedRef_C:
port = proto2.Port_C
}
switch ref.DeviceType {
case graphicData.RelatedRef_Section:
deviceType = proto2.DeviceType_DeviceType_PhysicalSection
case graphicData.RelatedRef_Turnout:
deviceType = proto2.DeviceType_DeviceType_Turnout
default:
panic(fmt.Sprintf("异常的设备类型-%s", ref.DeviceType))
}
return &proto2.DevicePort{
DeviceId: ref.Id,
DeviceType: deviceType,
Port: port,
}
}
func convertDevicePorts(refList []*graphicData.RelatedRef) []*proto2.DevicePort {
var dps []*proto2.DevicePort
for _, ref := range refList {
dps = append(dps, convertDevicePort(ref))
}
return dps
}
func findTurnoutIds(axleCountingMap map[string]*graphicData.AxleCounting, axleIds []string) []string {
if len(axleIds) <= 2 {
return nil
}
turnoutMap := make(map[string]bool)
for _, axleId := range axleIds {
axle := axleCountingMap[axleId]
relTurnoutCount := 0
var turnoutId string
for _, ref := range axle.AxleCountingRef {
if ref.DeviceType == graphicData.RelatedRef_Turnout {
relTurnoutCount++
turnoutId = ref.Id
}
}
if relTurnoutCount == 1 {
turnoutMap[turnoutId] = true
}
}
var turnoutIds []string
for id, _ := range turnoutMap {
turnoutIds = append(turnoutIds, id)
}
return turnoutIds
}
func buildKmConverts(ksList []*graphicData.KilometerSystem) []*proto2.KilometerConvert {
var kmConvers []*proto2.KilometerConvert
for i, ks := range ksList {
if ks.Kilometer == 0 {
continue
}
for j := i + 1; j < len(ksList); j++ {
if ks.Kilometer == 0 {
continue
}
kmConvers = append(kmConvers, buildKmConvert(ks, ksList[j]))
}
}
return kmConvers
}
func buildKmConvert(ks1 *graphicData.KilometerSystem, ks2 *graphicData.KilometerSystem) *proto2.KilometerConvert {
return &proto2.KilometerConvert{
KmA: convertKm(ks1),
KmB: convertKm(ks2),
SameTrend: false,
}
}